Structure-function relationship between tobacco mosaic virus coat protein and hypersensitivity in Nicotiana sylvestris.
نویسندگان
چکیده
Alterations in the structure of the tobacco mosaic virus (TMV) coat protein affect the elicitation of the N' gene hypersensitive response (HR) in Nicotiana sylvestris. To investigate this structure-function relationship, amino acid substitutions with predicted structural effects were created throughout the known structure of the TMV coat protein. Substitutions that resulted in the elicitation of the HR resided within and would predictably interfere with interface regions located between adjacent subunits in ordered aggregates of coat protein. Substitutions that did not result in the elicitation of the HR were either conservative or located outside these interface regions. In vitro analysis of coat protein aggregates demonstrated HR-eliciting coat proteins to have reduced aggregate stability in comparison with non-HR-eliciting coat proteins and a correlation existed between the strength of the elicited HR and the ability of a substitution to interfere with ordered aggregate formation. This finding corresponded with the predicted structural effects of HR-eliciting substitutions. Radical substitutions that predictably disrupted coat protein tertiary structure were found to prevent HR elicitation. These findings demonstrate that structural alterations that affect the stability of coat protein quaternary structure but not tertiary structure lead to host cell recognition and HR elicitation. A model for HR elicitation is proposed, in which disassembly of coat protein aggregates exposes a host "receptor" binding site.
منابع مشابه
Biophysical characterization of a designed TMV coat protein mutant, R46G, that elicits a moderate hypersensitivity response in Nicotiana sylvestris.
The hypersensitivity resistance response directed by the N' gene in Nicotiana sylvestris is elicited by the tobacco mosaic virus (TMV) coat protein R46G, but not by the U1 wild-type TMV coat protein. In this study, the structural and hydrodynamic properties of R46G and wild-type coat proteins were compared for variations that may explain N' gene elicitation. Circular dichroism spectroscopy reve...
متن کاملStudy on Genetic Diversity of Terminal Fragment Sequence of Isolated Persian Tobacco Mosaic Virus
Tobacco mosaic virus (TMV) is one of the devastating plant viruses in the world that infects more than 200 plant species. Movement protein plays a supportive role in the movement of other plant viruses, and viral coat protein is highly expressed in infected plants and affects replication and movements of TMV. In order to investigate genetic variation in the terminal fragment sequence in Iranian...
متن کاملTransient Expression of Foot and Mouth Disease Virus (FMDV) Coat Protein in Tobacco (Nicotiana tabacom) via Agroinfiltration
Background: Transient and stable transformation of host plants are the common techniques to produce transgenic plants. However, the main drawback of stable transformation is the fact that it takes quite a long time to produce a transgenic line. While, transient gene expression is a quick method to produce recombinant proteins in plants. Objective: The main goal of the present study was to eva...
متن کاملExpression of alfalfa mosaic virus coat protein in tobacco mosaic virus (TMV) deficient in the production of its native coat protein supports long-distance movement of a chimeric TMV.
Alfalfa mosaic virus (AlMV) coat protein is involved in systemic infection of host plants, and a specific mutation in this gene prevents the virus from moving into the upper uninoculated leaves. The coat protein also is required for different viral functions during early and late infection. To study the role of the coat protein in long-distance movement of AlMV independent of other vital functi...
متن کاملDNA Synthesis in Tobacco Mosaic Virus-Infected Nicotiana tabacum Protoplasts and Regeneration of Persistently Infected Calli.
Tobacco mosaic virus infection of Nicotiana tabacum mesophyll protoplasts did not affect the pattern of chloroplast or total cellular DNA synthesis for at least 120 h when compared with that of mock-infected cells. Calli derived from infected protoplasts often showed large amounts of tobacco mosaic virus RNA and coat protein.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 242 2 شماره
صفحات -
تاریخ انتشار 1994